欧式空间内积怎么求(两个平面夹角的余弦值公式)

作者:小玉 时间:2024-09-02 阅读:2033

1. 欧式空间内积怎么求,两个平面夹角的余弦值公式?

夹角的余弦值公式是cos=ab/|a|*|b|,其中a,b是向量,余弦值公式来自于余弦定理的推导,余弦定理是欧氏平面几何学基本定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理。余弦定理同时也是是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例,是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求三角的问题。

欧式空间内积怎么求(两个平面夹角的余弦值公式)

2. 复数的本质是什么?

数的概念扩展

复数

形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。

当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复数数多项式在复数域中总有根。

复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。

中文名复数表达式z=a+bi提出时间公元1世纪相关定理欧拉公式、棣莫佛定理命名者Rene Descartes

外文名complex number提出者Heron of Alexandria应用学科数学所属集合无序集合

简介 我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部不等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复数数多项式在复数域中总有根。 复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。

历史 最早有关复数方根的文献出于公元1世纪希腊数学家海伦,他考虑的是平顶金字塔不可能问题。

16世纪意大利米兰学者卡尔达诺(Jerome Cardan,1501—1576)在1545年发表的《重要的艺术》一书中,公布了一元三次方程的一般解法,被后人称之为“卡当公式”。他是第一个把负数的平方根写到公式中的数学家,并且在讨论是否可能把10分成两部分,使它们的乘积等于40时,他把答案写成

,尽管他认为和这两个表示式是没有意义的、想象的、虚无飘渺的,但他还是把10分成了两部分,并使它们的乘积等于40。给出“虚数”这一名称的是法国数学家笛卡尔(1596—1650),他在《几何学》(1637年发表)中使“虚的数”与“实的数”相对应,从此,虚数才流传开来。

数系中发现一颗新星——虚数,于是引起了数学界的一片困惑,很多大数学家都不承认虚数。德国数学家莱布尼茨(1646—1716)在1702年说:“虚数是神灵遁迹的精微而奇异的隐蔽所,它大概是存在和虚妄两界中的两栖物”。然而,真理性的东西一定可以经得住时间和空间的考验,最终占有自己的一席之地。法国数学家达朗贝尔(1717—1783)在1747年指出,如果按照多项式的四则运算规则对虚数进行运算,那么它的结果总是a+bi的形式(a、b都是实数)。法国数学家棣莫弗(1667—1754)在1722年发现了著名的棣莫佛定理。欧拉在1748年发现了有名的关系式,并且是他在《微分公式》(1777年)一文中第一次用i来表示-1的平方根,首创了用符号i作为虚数的单位。“虚数”实际上不是想象出来的,而它是确实存在的。挪威的测量学家韦塞尔(1745—1818)在1797年试图给予这种虚数以直观的几何解释,并首先发表其作法,然而没有得到学术界的重视。

十八世纪末,复数渐渐被大多数人接受,当时卡斯帕尔·韦塞尔提出复数可看作平面上的一点。数年后,高斯再提出此观点并大力推广,复数的研究开始高速发展。诧异的是,早于1685年约翰·沃利斯已经在De Algebra tractatus提出此一观点。

卡斯帕尔·韦塞尔的文章发表在1799年的《Proceedings of the Copenhagen Academy》上,以当今标准来看,也是相当清楚和完备。他又考虑球体,得出四元数并以此提出完备的球面三角学理论。1804年,Abbé Buée亦独立地提出与沃利斯相似的观点,即以来表示平面上与实轴垂直的单位线段。1806年,Buée的文章正式刊出,同年让-罗贝尔·阿尔冈亦发表同类文章,而阿冈的复平面成了标准。1831年高斯认为复数不够普及,次年他发表了一篇备忘录,奠定复数在数学的地位。柯西及阿贝尔的努力,扫除了复数使用的最后顾忌,后者更是首位以复数研究著名的。

复数吸引了著名数学家的注意,包括库默尔(1844年)、克罗内克(1845年)、Scheffler(1845年、1851年、1880年)、Bellavitis(1835年、1852年)、乔治·皮库克(1845年)及德·摩根(1849年)。莫比乌斯发表了大量有关复数几何的短文,约翰·彼得·狄利克雷将很多实数概念,例如素数,推广至复数。

德国数学家阿甘得(1777—1855)在1806年公布了复数的图象表示法,即所有实数能用一条数轴表示,同样,复数也能用一个平面上的点来表示。在直角坐标系中,横轴上取对应实数a的点A,纵轴上取对应实数b的点B,并过这两点引平行于坐标轴的直线,它们的交点C就表示复数 。像这样,由各点都对应复数的平面叫做“复平面”,后来又称“阿甘得平面”。高斯在1831年,用实数组 代表复数 ,并建立了复数的某些运算,使得复数的某些运算也像实数一样地“代数化”。他又在1832年第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法——直角坐标法和极坐标法加以综合。统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数一一对应,扩展为平面上的点与复数一一对应。高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间一一对应的关系,阐述了复数的几何加法与乘法。至此,复数理论才比较完整和系统地建立起来了。

经过许多数学家长期不懈的努力,深刻探讨并发展了复数理论,才使得在数学领域游荡了200年的幽灵——虚数揭去了神秘的面纱,显现出它的本来面目,原来虚数不“虚”。虚数成为了数系大家庭中一员,从而实数集才扩充到了复数集。

随着科学和技术的进步,复数理论已越来越显出它的重要性,它不但对于数学本身的发展有着极其重要的意义,而且为证明机翼上升力的基本定力起到了重要作用,并在解决堤坝渗水的问题中显示了它的威力,也为建立巨大水电站提供了重要的理论依据。

主要内容

定义

数集拓展到实数范围内,仍有些运算无法进行(比如对负数开偶数次方),为了使方程有解,我们将数集再次扩充。

在实数域上定义二元有序对z=(a,b),并规定有序对之间有运算"+"、"×" (记z1=(a,b),z2=(c,d)):

z1+ z2=(a+c,b+d)

z1× z2=(ac-bd,bc+ad)

容易验证,这样定义的有序对全体在有序对的加法和乘法下成一个域,并且对任何复数z,我们有

z=(a,b)=(a,0)+(0,1) × (b,0)

令f是从实数域到复数域的映射,f(a)=(a,0),则这个映射保持了实数域上的加法和乘法,因此实数域可以嵌入复数域中,可以视为复数域的子域。

记(0,1)=i,则根据我们定义的运算,(a,b)=(a,0)+(0,1) × (b,0)=a+bi,i × i=(0,1) × (0,1)=(-1,0)=-1,这就只通过实数解决了虚数单位i的存在问题。

形如

的数称为复数(complex number),其中规定i为虚数单位,且

(a,b是任意实数)

我们将复数

中的实数a称为复数z的实部(real part)记作Rez=a

实数b称为复数z的虚部(imaginary part)记作 Imz=b.

当a=0且b≠0时,z=bi,我们就将其称为纯虚数。

复数的集合用C表示,实数的集合用R表示,显然,R是C的真子集。

复数集是无序集,不能建立大小顺序。

复数的模

将复数的实部与虚部的平方和的正的平方根的值称为该复数的模,记作∣z∣.

即对于复数

,它的模

共轭复数

释义

对于复数

,称复数

=a-bi为z的共轭复数。即两个实部相等,虚部互为相反数的复数互为共轭复数(conjugate complex number)。复数z的共轭复数记作

性质

根据定义,若

(a,b∈R),则

=a-bi(a,b∈R)。共轭复数所对应的点关于实轴对称。两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数。在复平面上,表示两个共轭复数的点关于X轴对称,而这一点正是"共轭"一词的来源----两头牛平行地拉一部犁,它们的肩膀上要共架一个横梁,这横梁就叫做"轭"。如果用z表示x+yi,那么在z字上面加个"一"就表示x-yi,或相反[1]。

共轭复数有些有趣的性质:

复数的辐角

编辑

概述

在复变函数中,自变量z可以写成

,r是z的模,即r = |z|;θ是z的辐角,记作: Arg(z)。在-π到π间的辐角称为辐角主值,记作: arg(z)(小写的A)。

释义

任意一个不为零的复数

的辐角有无限多个值,且这些值相差2π的整数倍。把适合于-π≤θ<π的辐角θ的值,叫做辐角的主值,记作argz。辐角的主值是唯一的。

指数形式:

6运算法则

编辑

加法法则

复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。

乘法法则

复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2= -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。

除法法则

复数除法定义:满足

的复数

叫复数a+bi除以复数c+di的商。

运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算,

开方法则

若zn=r(cosθ+isinθ),则

(k=0,1,2,3…n-1)

运算律

加法交换律:z1+z2=z2+z1

乘法交换律:z1×z2=z2×z1

加法结合律:(z1+z2)+z3=z1+(z2+z3)

乘法结合律:(z1×z2)×z3=z1×(z2×z3)

分配率:z1×(z2+z3)=z1×z2+z1×z3

i的乘方法则

i4n+1=i, i4n+2=-1, i4n+3=-i, i4n=1(其中n∈Z)

棣莫佛定理

对于复数z=r(cosθ+isinθ),有z的n次幂

zn=rn[cos(nθ)+isin(nθ)] (其中n是正整数)

7分类

数的分类拓展到复数范围后,我们对复数范围的数集做以下分类

复数(a+bi)——集合符号C—实数(复数当b=0时)——集合符号R——有理数——集合符号Q(p/q)———①正有理数——集合符号Q+————正整数——集合符号N+或N*—————1—————质数—————合数————正分数———①0———①负有理数——集合符号Q-————负整数——集合符号Z-————负分数———②整数——集合符号Z————(自然数)——集合符号N————奇数————偶数———②分数——无理数———正无理数———负无理数—虚数(b≠0)——纯虚数(a=0)——混虚数(a≠0)

注:①②代表对“有理数”两种不同的分类方式。

8应用

系统分析

在系统分析中,系统常常通过拉普拉斯变换从时域变换到频域。因此可在复平面上分析系统的极点和零点。分析系统稳定性的根轨迹法、奈奎斯特图法(Nyquist plot)和尼科尔斯图法(Nichols plot)都是在复平面上进行的。

无论系统极点和零点在左半平面还是右半平面,根轨迹法都很重要。如果系统极点

位于右半平面,则因果系统不稳定; 都位于左半平面,则因果系统稳定; 位于虚轴上,则系统为临界稳定的。如果系统的全部零点和极点都在左半平面,则这是个最小相位系统。如果系统的极点和零点关于虚轴对称,则这是全通系统。

信号分析

信号分析和其他领域使用复数可以方便的表示周期信号。模值|z|表示信号的幅度,辐角arg(z)表示给定频率的正弦波的相位。

利用傅立叶变换可将实信号表示成一系列周期函数的和。这些周期函数通常用形式如下的复函数的实部表示:

其中ω对应角频率,复数z包含了幅度和相位的信息。

电路分析中,引入电容、电感与频率有关的虚部可以方便的将电压、电流的关系用简单的线性方程表示并求解。(有时用字母j作为虚数单位,以免与电流符号i混淆。)

反常积分

在应用层面,复分析常用以计算某些实值的反常函数,藉由复值函数得出。方法有多种,见围道积分方法。

量子力学

量子力学中复数是十分重要的,因其理论是建基于复数域上无限维的希尔伯特空间。

相对论

如将时间变数视为虚数的话便可简化一些狭义和广义相对论中的时空度量 (Metric) 方程。

应用数学

实际应用中,求解给定差分方程模型的系统,通常首先找出线性差分方程对应的特征方程的所有复特征根r,再将系统以形为f(t) =e的基函数的线性组合表示。

流体力学

复函数于流体力学中可描述二维势流(2D Potential Flow)。

碎形

一些碎形如曼德勃罗集合和茹利亚集(Julia set) 是建基于复平面上的点的。

实变初等函数

我们把数学分析中基本的实变初等函数推广到复变初等函数,使得定义的各种复变初等函数,当z变为实变数x(y=0)时与相应的实变初等函数相同。

注意根据这些定义,在z为任意复变数时,

①.哪些相应的实变初等函数的性质被保留下来

②.哪些相应的实变初等函数的性质不再成立

③.出现了哪些相应的实变初等函数所没有的新的性质。

复变指数函数

ea+bi=eaebi=ea(cosb+isinb)

复数的三角函数

证明:把yi代入泰勒级数,借助

来化简即可;

同理可得aix=cos(xlna)+isin(xlna)= (eix)lna

借助eix=cosx+isinx可以方便地证明棣莫佛定理[2]。

探讨一:

对于这个问题, 我觉得没什么"哲学"的. 数学引发出来的哲学问题不在这里. 而关于计量单位制, 它实际上只是一种规定而已, 比如对于"千克"这个单位, 重要的不是"这个东西究竟有多重", 而是"这东西的质量跟参照物的比值有多大"(不知道的就去查查千克原器). 现在不谈单位的问题, 因为它涉及到跟下文毫无关联的数学内容(齐次函数和\Pi定理等等).下面来就事论事.先不谈虚数单位的定义. 我们来看看数据是如何扩充的.整数抽象自日常的计数. 但是对于"半个馒头"等等的计数问题, 整数无能为力. 把问题精确地写出来, 就是: 多少个(相同的)馒头加在一起是一个馒头? 为此我们需要引入"半个馒头". 换句话说, 我们需要引入方程2x=1的解. 从而我们从直观上知道了什么叫做"有理数". 负数的引入同样是为了解这样的一次方程, 不赘述.[注: 我们觉得有理数很好理解, 不过是因为我们习惯了而已. 数学常常要打破习惯, 从而看到不一样的景色.]但是有理数究竟是什么? 对于正整数, 我们可以从日常的经验中抽象出来它的性质, 例如说"1是一只羊, 一头牛, 一个人......的共有的数量属性"(这句话本身含义不清楚, 但我们先不去管它). 正的有理数可以通过"等分"来直观地理解. 对于"零"和负数, 这种直观认知就已经有点困难了; 回想一下罗马人是如何对待零的. 为了弥补这种语义上的模糊带来的缺陷, 数学家发明了严格的定义; 下面再讲.对于无理数, 问题就更加严重, 因为日常计数问题中没有它的对应物. 实际上, 正如我们所知道的, 最早的无理数来源于几何度量问题: \sqrt2是最为人们熟知的无理数. 但是这依旧可以归结为为方程寻找根. Pythagoras学派遇见\sqrt2就是因为他们要为方程x^2=2寻找根. 这样, 我们从直观上知道了根式的含义.由此立刻产生了问题: 很多具有整系数的二次方程是没有根的(以及更高次的方程). 最简单的例子就是x^2=-1. 在抽象思维还不发达的时期, 这种方程确实是没有什么意思. 但正如我们所知道的, 情况从Cardano的时期开始发生了变化. 这段时间内不断地涌现出当时的数学家们无力解释的对象, 而"-1的平方根"就是一个最明显的例子. 为了使得三次方程有形式统一的求根公式, 不得不引入这个"毫无意义"的"虚数单位". 尽管意义不明确, 数学家们还是依靠虚数单位得到了一系列有意思的结果(当然, 很多时候它不过是一种形式上的运算; 只在实数的范围内并非不可以进行, 只是会麻烦得多).[由此我们可以看到"为方程寻找根"实际上是一个比"定义圆周率"要抽象得多的问题, 因为后者是"客观存在"的(现在不追究这是什么意思, 下文再讲), 而前者却不一定有什么现实对应物].我们知道Euler时期就已经对实数有了模糊的概念(他已经发现了很多跟e,\pi有关的结论), 但对于"虚数", Euler还是不能真正搞清楚, 尽管在形式上他得到了Euler公式e^{ix}=\cos x+i\sin x.[这个公式的含义实际上也不明确; 什么叫把e自乘i次?]Dedekind等人严格地定义了实数, 至此人们总算是能够用不引发歧义的语言来描述实数. 按照现在的观点, 实数其实也只是一个思维对象, 十进制小数和Dedekind分化等等不过是这个思维对象在现实中的实现. 而圆周率等等需要借助几何度量来定义的实数也可以纳入这个逻辑框架之下了, 因为有了分析学的帮助后, 我们就能够说清楚什么是"曲线的长度"了.但是对于"虚数", 不得不承认, 我们还是感到困难, 因为它并没有实在的对应物, 可偏偏在实际问题(流体力学, 传热学, 电学etc)之中有着重要的应用.怎么才能够为方程x^2=-1找到一个合理定义的"解"呢?我们当然可以通过实数域上的二维可除代数来定义复数. 但这样似乎没法做太多的推广. 所以我们换一种方式来考虑问题. 这种方式能够让我们说清楚什么是"添加代数方程的根".对于给定的域k, 考虑上面的多项式环k[x].[注: 回忆一下, 多项式环k[x]定义为无限循环群的系数在k中的(具有有限支撑的)群代数, 不应作为"多项式函数"来考虑.]对于一个不可约多项式f(x)\in k[x], 我们想要找到它的根. 为此, 考虑f(x)生成的理想I. 有不可约性, 它应当是极大理想, 所以商环K=k[x]/I是个域. 它包含了一个同k同构的子域, 所以可以看成是k的一个扩张. 进而, f(x)也可自然地看作是K上的多项式.K中的元素是等价类g(x)+I; 我们来特别地考虑类x+I. 根据商环的运算性质, 我们立刻得到f(x+I)=I. 换句话说, 在域K中, x+I是多项式f(x)的根. 至此, 我们找到了f(x)的一个根. 剩下的不过是通过不断地扩充域来穷尽f(x)的所有根(根据多项式的基本性质, 它在任何域中的根的数目都不可能超过它的次数).这样, 我们知道了"添加代数方程的根"的严格含义. 至于"有理数"的定义, 则要简单得多; 无非就是整环的分式域而已.如果某域上的任何代数方程在这域中都有解, 则这域称作代数闭的. 对于这类域, 研究其上的多项式是一件比较容易的事情; 实际上, 任何多项式都可以分解成线性因式的乘积(Bezout定理).回到复数的情形, 取k=\mathbb{R}, f(x)=x^2+1, 则得到地域扩张就是复数\mathbb{C}. 这个域是代数闭的; 这是所谓的"代数基本定理", 有很多很多的(代数的, 是分析的, 复分析的, 拓扑的,...... )证明, 但代数味道最浓的自然还是基于代数学的证明. 正因为\mathbb{C}是代数闭的, 它才在数学中扮演着举足轻重的角色. 只举最简单的例子. 为了计算某个方阵的100次乘幂, 我们常常需要把它化为Jordan标准型, 而这必须要借助复数来加以实现. 要是不通过复数, 则计算量会大得难以想象.说了这么多, 才发现自己写了很多似乎很"哲学"的话, 之后后面一部分是干货. 但假如前面的"哲学"能够帮助一些人想清楚问题的话, 我也很欣慰.

探讨二:令人困惑的数学定义之二 ——虚数单位i定义

拿负数来开平方有必要吗?有必要!

但是这个问题的完整解答,远不止于“定义:i^2=-1”。

一、笔者首先简要地介绍有理数集:

1、我们有自然数集和加法运算,自然数集对加法运算封闭(两个自然数做加法运算结果还是自然数)。

2、加法运算的逆是减法运算,但是自然数集对减法运算不封闭(不能保证任意两个自然数做减法运算结果还是自然数);通过定义了负数,把自然数集扩充为整数集;整数集对加法运算和减法运算都封闭(人们认可负数经历了很长的过程,原因是认为负数没有现实意义)。

3、乘法运算的逆是除法运算,整数集对乘法运算封闭,但是对除法运算不封闭;通过定义了分数,把整数集扩充为有理数集;有理数集对加法运算、减法运算、乘法运算和除法运算(除数非零)都封闭。

4、有理数集更严格的称谓是“有理数域”,但是“域”的解释需要抽象代数的内容,为了通俗起见,笔者就把“有理数域”称为“有理数集”;以上的“集”都是集合的意思,就是同一类数的集合;比如自然数集、整数集。

二、万物皆数与毕达哥拉斯定理:

1、古希腊时期的毕达哥拉斯学派认为”万物皆数“并奉为教义,这里的数指的是有理数;这种信念源于他们对自己构造的有理数集的自信,他们认为有理数集已经包含了所有的数。

2、随后这个学派发现了”毕达哥拉斯定理“,即”勾股定理“,并用面积法给出了证明。

image.png

image.png

3、如果”万物皆有理数“的话,那么直角三角形的斜边也应该是有理数;但是毕达哥拉斯学派的希帕索斯(Hipasus)找到了这样的例子并给出了证明:a=1,b=1,由a、b通过勾股定理确定的c不是有理数!有一种说法是Hipasus因为这个发现被逐出了学派,另一种说法是他遭到了学派的屠戮。

4、无论如何,有理数集中没有这样”c“,但是现实中确实存在这样的c,那唯一的原因就是毕达哥拉斯学派创造的有理数集存在缺陷,没有涵盖所有的数!

5、通过添加开n次方运算,把有理数集扩充为实集(实集不是实数集,只是部分实数的集合,这里的实集严格来说只是有理数集的n次代数扩张)。

6、实集对加法运算、减法运算、乘法运算和除法运算(除数非零)封闭,实集中的正数还对开n次方运算封闭,实集中的负数对开奇数次方运算封闭而对开偶数次方不封闭;特别的,√(-1)不在这个实集中,换言之在这个实集中没有数的平方等于(-1)。

三、是添加定义的时候了吗?

1、那是否应该添加定义”i^2=-1”或是“i=√(-1)”,把上述的实集做成一个更大的数集?

答案是人们认为没有必要!

2、人们认为正数开方是有意义的,因为开方的结果在现实中有这样的元算与之对应。正如√2,人们确实能找到一条长度不多不少恰好是√2的线段。

3、人们认为负数开方是没有意义的,因为开方的结果在现实中没有这样的元素与之对应。当然笔者还说过,那个时代,人们甚至还不认可负数,因为在现实中没有”负“的线段。³√(-2)=-³√(2)只是正数开方的一种”变形“;至于√(-1),那更没有人关心有没有东西与它对应了,因为它没有现实意义。

四、三次、四次方程与求根公式:

1、所谓的方程,就是含有未知量的等式;未知量是数,方程就是代数方程;未知量是函数,方程就是函数方程(例如微分方程和积分方程);方程的解,就是一个能使方程成立的量;代数方程的解是数,这样的数称为代数方程的根。

2、代数方程里,人们比较关注多项式方程,因为这样的方程与人们的生产生活密切相关;古典数学时期,数学家研究的方程也主要是多项式方程。下文出现的”方程“都特指”多项式方程“。

3、所谓的方程的求根公式,就是用方程的系数通过加减乘除和开方运算来构造根的式子。

4、一次方程和二次方程的求根公式很早就被发现了,人们致力于寻找三次和更高次方程的求根公式。

5、16世纪意大利数学家菲尔洛(Ferro)发现了缺二次项的、即形如x3+px+q=0的三次方程的求根公式。因为当时人们普遍不接受负数,所以实际上Ferro是把缺二次项的三次方程分成了三类:x3+px=q、x3=px+q、x3+q=px,p和q都是正数;他分别给出了解法。

6、有意思的是,当时的数学家之间流行”决斗“(文艺复兴时期的风气?)。所谓的”决斗“,就是相互要求对手解决自己提出的问题。所以Ferro把自己的三次方程求根公式作为决斗时秘密武器,没有发表。也因为这个求根 公式,Ferro在决斗中屡屡获胜,名声鹊起。

7、Ferro死前,把自己的秘密武器传授给了学生菲奥尔(Fior)和女婿兼继承人纳威(Nave)。

8、Fior也是一个争强好胜的人,他向当时的数学家塔尔塔利亚(Tartaglia,这不是原名,意为口吃者,Tartaglia孩童时期被法国士兵用马刀砍伤了脸变成口吃)提出挑战。Tartaglia并不知道缺二次项的三次方程的求根公式,但是在挑战的压力下,竟然成功地推导出了一般的求根公式!因此,Tartaglia在与Fior的决斗中大获全胜,因为后者并不会解形如x3+rx2+px+q=0的一般三次方程。Tartaglia名声鹊起。

9、卡尔丹(Cardano)得知这件事后,多次乞求Tartaglia把求根公式告诉他。作为回报,Cardano许诺给予Tartaglia经济上的援助。Tartaglia最终耐不住Cardano的软磨硬泡和利益诱惑,把求根公式以一首晦涩难懂的语句诗的形式告诉了Cardano,并要求Cardano发誓保密。

10、后来,Cardano从Nave那里了解到Ferro的求根公式,认为Tartaglia的求根公式本质上和Ferro的求根公式是一样的(其实一般的三次方程通过一个变量代换就可以转化为缺二次项的三次方程,待会大家就会看到)。

11、所以Cardano不顾自己的誓言,把求根公式传授给了学生费拉里(Ferrari),Ferrari在此基础上竟然发现了四次方程求根公式!

12、Cardano把三次方程求根公式和学生Ferrari的四次方程求根公式发表在了自己的著作《重要的艺术》(Ars magna)。Cardano这样评论道:”Ferro在30年前就发现了这个法则,并把它传给了Fior。是Fior向Tartaglia挑战,使得Tartaglia有机会重新发现这一法则。Tartaglia在我的恳求之下把这个法则告诉了我,但Tartaglia保留了证明,我在获得这种帮助之下找到了它的证明“。

13、接下来就是Tartaglia对Cardano的严厉控诉,谴责Cardano的背信弃义。愤怒的Tartaglia向Cardano提出挑战,而Ferrari代替自己的老师接受了挑战。因为Ferrari已经发现了四次方程的求根公式,所以大败Tartaglia。Tartaglia名声扫地,在争吵和穷困中度过了晚年。

14、三次方程求根公式是枯燥的,但是公式背后的历史是有趣的;笔者无意评论Cardano和Tartaglia孰对孰错,每个读者心中自有看法。

五、三次方程不可约的情况:

1、一般的三次方程为aX3+bX2+cX+d=0,通过变量代换X=x-[b/(3a)](前文提及的),一般的三次方程可以转化为缺二次项的三次方程x3+px+q=0,求解这个方程就可以了。

2、x^3+px+q=0的求根公式:

image.png

这里笔者就不给出求根公式的推导过程了。

3、注意到⊿要开平方,但⊿并不能保证一定大于0。也就是说,Cardano或是Tartaglia的用加减乘除和开方运算构造的求根公式里,可能要面临负数开平方的困境。

4、为了让读者更清晰地认识到矛盾所在,笔者举一个例子:

三次方程x^3+px+q=0,p=-10,q=6。

函数y=x^3-10x+6的图像大致为

image.png

函数曲线和x轴相交地点的x值,就是三次方程x^3-10x+6=0的根。

通过图像,我们可以清楚地看到这个三次方程有3个实根。

但是,⊿=(1/4)q2+(1/27)p3=-28.037<0!

5、也就是说,实系数的三次方程,对于⊿<0的情况,为了得到3个实根,根据求根公式,必须对负数开平方!这个结果对16世纪的数学家是难以接受的。

6、借助负数开平方得到实根的过程,实在难以让人满意,所以Cardano试图”修正“求根公式来避免这种情况。但是,所有的尝试都失败。Cardano无奈地把这种情况称为”三次方程不可约“情况。

7、为了处理这种情况,Cardano引入了虚数单位i,定义i^2=-1,使得求根公式可以正常运作。

8、那么这样的”修正“是否存在呢?直到19世纪,天才数学家伽罗瓦(Galois)才用他开创性的群论工具才给出答案:不存在!也就是说:”借助负数开平方得到实根的过程“是无法避免的!9 、这里必须强调的是:二次方程的求解之所以没有导致虚数i的引入,原因在于判别式⊿<0时方程确实没有实数解,直观地看就是函数曲线y=ax^2+bx+c与x轴确实没有交点,人们不会有兴趣更不会认为有意义而去为负数开平方动脑筋!

六、总结与反思:

1、数学似乎和所有人开了一个玩笑:当你认为有理数域完备的时候,你发现用自己证明的毕达哥拉斯定理居然发现了一大类怪胎,所以不得不把开方运算纳入系统;当你认为求根公式能解决所有三次方程的时候,你发现三个明显存在的实根居然要借助负数开平方,所以不得不定义”i2=-1”;至于定义了”i2=-1”之后,给代数和分析带来的诸多便利,那已经是后话。

2、这再次验证了笔者的话:“没有哪一位数学家,可以从一开始就预见他所定义创造的东西,能带来多少方便快捷”,或是存在多少缺陷;数学家都是摸着石头过河,一路上很多修修补补。课本中的斟字酌句的描述,未能表现出创造过程中的斗争、挫折,以及在建立一个客观的结构之前,数学家所经历的艰苦漫长的道路。

3、“i^2=-1”的故事,远不是一个简单的定义所能讲述的.

探讨三:复数最本质的特性是什么?为什么物理上需要,并且能够如此频繁地使用复数?楼上的答案都没有提到这一点,复数最重要的性质是旋转。也就是两个复数的积的辐角等于各自辐角的和。如果没有这一特性,复数在数学和物理上的地位不会像现在这么重要。

image.png

先从原题说起,从根本上来看,为什么i是-1的平方根。如上图复数构成一个平面,实轴和虚轴正交。-1位于实轴负半轴,辐角为π(180度)。开平方,按照前面说的辐角的性质,即是辐角减半,变为π/2,也即虚轴正半轴上的i的位置。另一个解是辐角为3π/2的-i,因为-1的辐角也可以是3π。或者反过来看,一个复数乘以i,就相当于逆时针旋转π/2。那么i^2=1ii,就是把1旋转了2次π/2,正好落在-1上。举一反三,现在大家明白如何从复数旋转的角度,来说明为什么负负得正了吧?

理解了这一点,就很容易明白,为什么复数作为一个不那么自然的,人为发明的数,能够如此好地应用于物理了。比如极其重要的简谐振动,可以看成复平面单位圆上,做匀速圆周运动的点,在实轴上的投影。既然是旋转,那么用时间的指数函数就可以表达了,并且求导非常方便。

探讨四:首先 -1 可以是什么?我们用最简单的例子讲,cos(\pi )=-1按照i的定义,i是-1的平方根,或者i\cdot i=-1,于是我们有:cos(\pi)=i\cdot i接着来:cos(\pi)=cos(\pi/2+\pi/2)=i\cdot i

如果你的代数感觉好,你马上就觉得上面的式子有一些“代数味道”。是的,一个角度为\pi的旋转,可以看作两个角度为\pi/2的旋转之和。i和i的乘法,也有类似的交换群的感觉。索性,我们把式子补齐:cos(\pi)=cos(\pi/2+\pi/2)=-1sin(\pi)=sin(\pi/2+\pi/2)=0

还记得三角恒等式么:cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a+b)=sin(a)cos(b)+cos(a)sin(b)

针对一个任意角度,把cos部分作为实部,把sin部分作为虚部,用三角不等式就可以构造出复数的乘法,这就是复数乘法的意义。改写成:cos(a+b) + isin(a+b) = [cos(a)cos(b)-sin(a)sin(b)] + i[sin(a)cos(b)+cos(a)sin(b)]也就是教科书上看到的形式:z_{1} \cdot z_{2} = (x_{1} + iy_{1}) \cdot (x_{2} + iy_{2}) = [(x_{1} x_{2}) - (y_{1} y_{2})] + i[(x_{1} y_{2}) - (x_{2} y_{1})]

如果你有兴趣,请玩欧拉公式,去了解这种乘法计算中的各种有趣的地方。

至于i么,其实就是复平面上的一个自然基。i的“全称”是:i=[0, 1]^{T} =[cos(\pi/2), sin(\pi/2)]^{T}

小结一下:在实数上玩的时候(比如代数多项式的根),常常发现数不够用,于是把实数扩张成复平面。复数(域)的运算限制在实轴(域)上都是成立的。i的平方所以是-1,这样理解:平方是同一变换两次合成的结果。把实数乘法单位元1变换成-1(加法群逆元),需要在复数域中表达为一个角度为\pi的旋转变换,或者看作两个角度为\pi/2旋转变换的合成。因此,i只是一个\pi/2旋转变换的结果。

我们刚才都是从代数在讲。我们注意从分析上:cos(x)^{'} = -sin(x)sin(x)^{'} = cos(x)各种导数,都无非是在相位上变换;欧拉公式也能看出,乘除和指对数也都是在相位上变换;就不难理解为什么那么多物理现象需要用复数来描述了。

3. x对称的矩阵?

1.对于任何方形矩阵X,X+XT是对称矩阵。[1]

2.A为方形矩阵是A为对称矩阵的必要条件。

3.对角矩阵都是对称矩阵。

4.两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。

5.用<,>表示 上的内积。n×n的实矩阵A是对称的,当且仅当对于所有X, Y∈ , 。

6.任何方形矩阵X,如果它的元素属于一个特征值不为2的域(例如实数),可以用刚好一种方法写成一个对称矩阵和一个斜对称矩阵之和:

7.每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。

8.若对称矩阵A的每个元素均为实数,A是Symmetric矩阵。

9.一个矩阵同时为对称矩阵及斜对称矩阵当且仅当所有元素都是零的时候成立。

10.如果X是对称矩阵,那么对于任意的矩阵A,AXAT也是对称矩阵。

11.n阶实对称矩阵,是n维欧式空间V(R)的对称变换在单位正交基下所对应的矩阵。

4. 第二类曲线积分的几何意义?

本质上来说的话,第二类曲线积分是求变力沿曲线做的功。第一类曲线积分是求曲线物体的质量。从微积分学角度来说的话,第一类曲线积分是对曲线的线密度积分,就是质量。

第二类曲线积分是曲线对力的作用效果积分,也就是功。但区别在于它质量是固定值,没有负的,而功虽然也是标量,但它有正负,所以对力的作用效果积分的路径要有个方向,如果是反向,功自然变为相反数。

至于功,是力的矢量与位移的矢量的内积,力的矢量就是第二类曲线积分的被积向量值函数,而所谓位移就微分成路径的切向量,这样在每一点的力矢与径矢的数量积都是功元素。

(这里要说明一下,如果路径是反向的话,那么力矢与径矢的数量积也变为相反数,这就是为什么第二类曲线积分路径如果变为反向积分值也会变为反向的本质原因!)

对这条曲线上的所有功元素积分,就是变力沿曲线所做的功!而至于两类曲线积分的联系,说白了,你把第二类曲线积分每一点的单位切向量拿出来和向量值函数做数量积,然后就变成第一类曲线积分了。

5. 行向量与列向量几何意义?

行向量与列向量可以看成是m*1或者是1*n的矩阵,不仅仅只是表示上的方便.比如说讨论矩阵的秩,你可以吧m*n的矩阵看成是行向量组,那么矩阵的秩就是这组行向量的秩,对列向量也有相同的结论.另外在欧式空间中定义内积的时候,作用的两个元素x,y本身为两个n维列向量,通过内积(实质上是一种特殊的双线性函数)映射为R上的一个数,定义的形式为:x的转置乘以y(也就是对应的坐标相乘求和x1*y1+x2*y2+x3*y3)

6. 两个圆的周长不相等?

这是平直的欧氏空间上的性质,如果不是欧氏几何,比如说球面上,一般就不成立,比如纬线圈长度和到北极距离(注意球面上只能用球面距离)就不成比例。 欧氏空间主要有以下性质: 1. 它是一个线性空间,而且原点可以任意选择(也叫做仿射空间),也就是说任意图形都可以平移、旋转、缩放而仍然在空间内 2. 它是一个内积空间,长度定义为内积的平方根,而内积有双线性性质,意味着旋转时长度不变,缩放时长度按比例增加(整体平移时向量本身是不变的);内积也定义了角度,因而平移、旋转、缩放时角度不变。 这些性质在欧氏几何中作为公理和公设出现,在线性代数中则认为是代数结构的性质。 有这些基础之后可以定义更广泛的相似性: 对于点集A,如果存在仿射变化f,将A中每个点经过f变化,得到的新点集恰好为A',则称A'与A相似。根据前面的性质,相似的两个图形,直线仍然对应直线,角度不变,距离则成固定比例。 由于仿射变化是可以复合的,因此通过多个平移、旋转、缩放之后重合也是一样的。 接下来证明任意两个圆都是相似的,我们可以将圆和圆心一起做变化,只需要仿照其它答主的方法:首先将圆心平移到重合的位置,然后以圆心为原点按半径比例缩放,则圆周上点到圆心的距离仍然相等,得到了一个新的圆,很容易证明两个圆现在完全重合。 既然任意两个圆都相似,那么最后一个问题是考虑周长的问题了,首先需要定义周长,我们一般定义曲线长度为内接折线长度的上确界,对于圆来说,就是内接简单多边形的周长的上确界了;那么不难发现,设相似变换为f,则第一个圆上的任意内接简单多边形,经过f变换,都得到第二个圆上的一个对应的、相似的内接简单多边形,因而多边形周长成固定比例;因为f可逆,因此反过来也有同样的对应关系。因为每个元素都相应成比例,那么运用与常数乘积的极限性质,整体的上确界也相应成比例了,因而圆的周长的比例也是相似比。很容易发现这一点可以推广到任意曲线上。 既然周长和半径(直径)都相应成比例,那么周长和直径的比值自然就是固定值了。

7. 面面的余弦值求法?

面面夹角的余弦值公式是是cos=ab/|a|*|b|。余弦余弦函数,三角函数的一种。在Rt△ABC直角三角形中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:fx=cosxx∈R。其中a,b是向量,余弦值公式来自于余弦定理的推导,余弦定理是欧氏平面几何学基本定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理。

两个面的夹角余弦值说明

要求两个面的夹角的余弦值,首先要在面上任意确定找出三个点,根据点写出2个向量,再用2个向量计算出面的法向量,再运用同样的方法求出第二个面的法向量,然后将这两个法向量进行计算求数量积,再运用数量积除以两个向量的模之积,即可求得这两个向量角度余弦值,再取正值,即是平面的二面角。

上一篇:空调不制冷一般是什么问题(家里空调不制冷

下一篇:暂无数据

猜你喜欢

绿色建材建筑(绿色建筑设计可以从哪个角度入手)

绿色建材建筑(绿色建筑设计可以从哪个角度入手)

资讯 2023-11-02 4322
烤漆门价格(实木烤漆门价格实木烤漆门好吗)

烤漆门价格(实木烤漆门价格实木烤漆门好吗)

资讯 2023-11-05 1609
聚酯纤维是什么面料俗称(衣服里的聚酯纤维是什么)

聚酯纤维是什么面料俗称(衣服里的聚酯纤维是什么)

知识 2023-11-08 3268
汽车装潢美容学徒(2017年26岁了)

汽车装潢美容学徒(2017年26岁了)

知识 2023-11-13 2767
芬尼空气能热水器代码(芬尼空气能怎么开制热)

芬尼空气能热水器代码(芬尼空气能怎么开制热)

知识 2023-11-14 1826
装修公司北京排名前十口碑推荐(中国有哪些大的建筑企业)

装修公司北京排名前十口碑推荐(中国有哪些大的建筑企业)

资讯 2023-11-17 3025
整建整装镇江(这场仗是否有机会能打赢)

整建整装镇江(这场仗是否有机会能打赢)

知识 2023-11-24 437
「工业之美」这台巨无霸挖掘机价达7000万,一铲可挖煤50吨

「工业之美」这台巨无霸挖掘机价达7000万,一铲可挖煤50吨

知识 2023-12-28 2006
中式简约风格餐厅(如何形容餐厅装修设计)

中式简约风格餐厅(如何形容餐厅装修设计)

资讯 2024-01-04 1593
“人过六十九,五地不留久”,人到了六十九岁后,要少去这些地方

“人过六十九,五地不留久”,人到了六十九岁后,要少去这些地方

资讯 2024-01-08 4143
220v用万用表什么档位(万用表测消防电压用什么档位)

220v用万用表什么档位(万用表测消防电压用什么档位)

资讯 2024-01-12 2591
110kv电力电缆型号(lvb110w3是电磁互感器吗)

110kv电力电缆型号(lvb110w3是电磁互感器吗)

资讯 2024-01-13 3440
壁纸粘贴效果图(壁纸上面可以直接再贴壁纸吗)

壁纸粘贴效果图(壁纸上面可以直接再贴壁纸吗)

资讯 2024-03-01 2379
家庭餐厅装修设计过程中的餐厅吊顶设计原则和不同风格的家庭餐厅吊顶介绍

家庭餐厅装修设计过程中的餐厅吊顶设计原则和不同风格的家庭餐厅吊顶介绍

知识 2024-03-16 2206
春天要“防燥润肺”,常吃2菜,多喝2汤,为下半年健康铺路

春天要“防燥润肺”,常吃2菜,多喝2汤,为下半年健康铺路

资讯 2024-04-01 2748
师傅来了第四期,窗帘百叶帘安装的好帮手!电锤 吸尘盒 ...

师傅来了第四期,窗帘百叶帘安装的好帮手!电锤 吸尘盒 ...

资讯 2024-04-18 994
5K壁纸:马里奥(壁纸 马里奥)

5K壁纸:马里奥(壁纸 马里奥)

知识 2024-05-07 4732
上海健步楼梯厂家(工作上的压力应该如何去排解)

上海健步楼梯厂家(工作上的压力应该如何去排解)

知识 2024-07-17 499
延长米换算平方米(300平方等于多少延米)

延长米换算平方米(300平方等于多少延米)

知识 2024-07-31 3478
门铃开关怎么用(门铃怎么按才会开)

门铃开关怎么用(门铃怎么按才会开)

知识 2024-08-06 3457